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Abstract 
Space mission planning/scheduling is determining the set of 
spacecraft activities to meet mission objectives while 
respecting mission constraints. 
  One important type of mission constraint is data 
management.  As the spacecraft acquires data via its 
scientific instruments, it must store the data onboard until it 
is able to downlink it to ground communications stations.  
Because onboard storage is limited, this can be a 
challenging task. 
  This paper describes a formulation of the data downlink 
scheduling problem used for the Rosetta orbiter, a European 
Space Agency cornerstone mission currently investigating 
the comet 67P/Churyumov-Gerasimenko.  We first describe 
the abstract problem and the Rosetta mission specific 
problem, along with desirable features of downlink 
schedules.  We outline several algorithms (including the 
Rosetta operational algorithm) and we compare their 
performance on both actual mission data. 

 Introduction   
Spacecraft enable us to measure and explore a wide range 
of targets spanning Earth, to the planets and bodies of our 
solar system, to bodies beyond our galaxy to the furthest 
reaches of the universe. 
 Mission planning and scheduling is an extremely 
challenging part of operating these space missions.  While 
in the space community it is termed mission planning, from 
an Artificial Intelligence perspective the issue is more 
scheduling than planning as the challenge is to find 
appropriate times to schedule observations to achieve 
mission objectives that conform to the operations 
constraints of the spacecraft.  Space mission planning 
represents a fertile applications area for Artificial 
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Intelligence-based planning and scheduling techniques 
with a wide range of deployed systems (for a survey see 
[Chien et al. 2012]).  
 One particular challenge for space mission planning is 
downlink planning.  In this problem the data acquired 
onboard from engineering telemetry and science 
observations is stored onboard.  This onboard storage is 
limited and is often pre-partitioned in an inflexible 
allocation.  Commonly, first a schedule is negotiated 
between the space mission and a ground communications 
station provider (or providers).  Once this schedule has 
been determined, a prior version of a mission plan is 
adapted to ensure that all data is preserved - determining 
exactly which portions of onboard storage are downlinked 
when so as to enable the science and engineering data to be 
acquired and downlinked without loss of data.   
 Many variants of this downlink problem exist.  For 
example, there may be some uncertainty as to the volume 
of acquired data. There may be certain types of data that 
have deadlines for downlink.  We describe a particularly 
challenging downlink problem in which data generation 
may occur over extremely long periods of time overlapping 
downlink periods. 

Problem Definition 
 
We formalize the data downlink problem as follows: 
 
Given:  
a set of buffers B = {b1, b2, ... bn} 
where each bi has  
an initial fill state: init_filli 
 (fill state of buffer at start of planning interval) 
end fill limit: end_filli 
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 (hard limit on fill state of buffer  
  at end of planning interval) 
hard capacity: capacityi 
desired margin: margini 
 (soft limit on buffer fill volume  
  at any point in the interval) 
and the operations plan dictates for each bi in B, there is a  
 
fill_function fill(bi,t)→rate where rate is bits/s 
 
and there is a set of downlinks D={d1,...dm} where each  
 
di=<start_di, end_di, rate_di> 
 
(we assume that no downlinks are overlapping) 
 
for each downlink specify a downlink rate from each 
buffer such that the sum of all buffers downlink rates is <= 
downlink data rate 
 
∀bi, a function empty(bi,t)→rate (bits/s) such that  
 
∀downlink di 
start_di ≤ t ≤ end_di Σ empty(bi,t) ≤ rate_di 
(i.e. at any point in time we can only downlink up to our 
downlink capacity) 
 
∀t ∈ current_schedule current_fill_state(bi, t) ≤ capacityi   
 
also it is desired that peak fill state and end fill state meet 
their targets.  Specifically: 
 
no peak margins are violated 
∀t in current_schedule, for all bi 
max(current_fill_state(bi, t)) ≤ margini   
 
no end margins are violated 
for t = end of current_schedule,  
∀bi current_fill_state(bi, t)) ≤ end_filli   
 
In reality, as we will see, flight software on actual missions 
is not designed to allow for arbitrary downlink policies, so 
that our ability to control the empty(bi,t) function is not as 
flexible as desired. 
 

The Rosetta Downlink Scheduling Problem   
 
The Rosetta onboard data storage is partitioned into a set of 
buffers, called packet stores, for different types of science 
and engineering data. Each instrument is designated a 
packet store with a specified hard upper volume limit that 
cannot be changed during routine scheduling.  

 The behavior of each downlink can only be controlled 
by two commands: SET_SCI_DW_LEVEL and 
STOP_DUMP.  
• The first, SET_SCI_DW_LEVEL, is issued at the 

start of the downlink and assigns a priority to each 
of the packet stores.  

• The second, STOP_DUMP, can be issued any time 
during the downlink and stops the downlink of data 
from the specified packet store for the remainder of 
the current downlink. Note that once a packet store 
has been stopped, it cannot be restarted for that 
downlink. 

 These two commands, along with their timing and 
parameters, make up the decision variables available to the 
scheduler for controlling the “empty” functions described 
earlier. To fully understand how these variables affect the 
“empty” function, we must examine the onboard software 
that controls the data downlink. We summarize the 
behavior of the downlink software in the following set of 
rules. 
• Two of the packet stores (used for high-priority 

engineering data) have fixed priorities and cannot 
be stopped with STOP_DUMP commands.  

• A packet stores remains “active” until the 
STOP_DUMP command is issued, after which no 
data will be downlinked regardless of priority. 

• When more than one active packet store has data 
waiting to be downlinked, the one with higher 
priority will be dumped first. 

• If more than one active packet store all have the 
same priority, data will be downlinked in a round-
robin fashion. 

• Each packet store has a predefined packet size 
which defines the minimum amount of data that will 
be downlinked on each round-robin cycle. 

• When a packet store contains less than one packet, 
downlink for that packet store will stop, possibly 
allowing downlink to start on the next highest 
priority packet store. 

• If, at any time during the downlink, data is added to 
an empty but active packet store, downlink for that 
packet store will restart, preempting any downlink 
from lower-priority packet stores. 

• Both the “active” state and the priority are reset at 
the end of the downlink. 

 Given the two available commands, and the set of 
downlink rules, the primary job of the downlink scheduler 
is to assign priorities and decide when to stop dumps in 
order to prevent overflow on all packet stores. The 
secondary goal of the scheduler is to make selections that 
prevent margin violations. Last, for some of the packet 
stores, there is a desire for the scheduler to keep margins as 
large as possible. 
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 To achieve these goals, the scheduler must first model 
the behavior of the packet stores so that volume and 
overflows can be accurately predicted. Fill rates from 
observations, and dump rates from downlinks, are all 
provided as inputs to the scheduler.  When constructing the 
schedule for the first time, the scheduler must decide on 
which observations to include as well as which downlink 
commands to issue to best satisfy science requests. In this 
paper, we focus on the scheduling of downlink commands 
only, assuming an observation schedule is fixed. Note that 
this type of re-scheduling of the downlink commands is 
necessary during short-term planning when certain last-
minute changes must be made (e.g. due to the loss of a 
downlink). However, in the larger mission 
planning/scheduling process, observation scheduling and 
downlink scheduling are performed simultaneously.   
 With a model of how data is collected and downlinked, 
the scheduler can generate a profile for each packet store 
that predicts the data volume at any point during the 
planning period. This profile can be used not only to 
predict overflows, but also provides information to the 
scheduler about when, and by how much, data will 
overflow. This information can then be used to make 
decisions about which priority values to assign at the start 
of each downlink, and when to stop the dump during each 
downlink. For example, after a given downlink, if there is 
one particular packet store that will overflow sooner, or 
exceed its limit by more than any other packet store, then 
that packet store should be given higher priority or more 
time to downlink. 
 In our original implementation, we used a fixed set of 
pre-assigned priorities that were mostly unique, and 
selected only the length of time for each dump. Due to the 
serial nature of the resulting dump schedule, this method 
proved brittle to communication loss (packet stores 
scheduled near the end of the downlink would be unfairly 
impacted). To address this problem, we implemented the 
priority-based method, which assigned different priorities 
for each downlink but did not issue STOP_DUMP 
commands. Ideally, both SET_SCI_DW_LEVEL and 
STOP_DUMP would be used to select the best possible 
dump schedule, measuring both quality and robustness of 
the schedule. This is left for future work. 
 In this paper, we focus on the priority-based method, 
since this is the default method used in current operations. 
Therefore, in this formulation, the control variables are: 
 
 for each downlink:  d1,...di 
 for each packet store:  s1,...sj 
 assign a priority to Pa,b for a =1...i, and b = 1...j 
 
Note that these priorities, together with the packet store 
initial states and incoming data, effectively define an 
empty(bi,t) function. 

 Figure 1 contains the pseudo-code for scheduling 
downlink priority commands for the Rosetta spacecraft. 
The initial schedule contains only fill activities that 
generate data into packet stores with continuously 
increasing volumes (beyond their limits). Lines 3-6 
heuristically assign a priority to each packet store of each 
downlink, generating a list of overflows that result. If an 
overflow occurs before the end of a downlink, the schedule 
will perform limited backtracking to reschedule at most 
two of the previous downlinks (line 8). 
 The function priorityHeuristic (lines 11-17) implements 
the operational heuristic for making priority-based buffer 
allocations for a given downlink. Here, packet stores are 
given a priority that is inversely proportional to the number 
of the downlinks that occur before the first overflow (lines 
15-17). This ensures that high priority is given to packet 
stores with more urgent need for downlink. A similar 
heuristic is used to choose STOP_DUMP times in the 
time-based method. As an example, if two or more packet 
stores have future overflows at around the same time, then 

they will likely be assigned the same priority (or same 
amount of time). If an immediate overflow has been 
identified for the given packet store, then it will be 
assigned the highest priority (line 12-13). An immediate 
overflow is defined as one that occurs before the next 
downlink. Note that downlink parameters are chosen 
independent of other downlinks and packet stores. Choices 
made for one downlink have only an indirect impact on the 
choices that will be made for future downlinks.  
 For evaluation purposes only, we consider three 
additional heuristics for selecting priorities. First, as a 
baseline, we randomly select priorities. Second, we assign 
the highest priority to the packet store with the largest 

1. scheduleDownlinks(downlinks) 

2.   sortByStartTime(downlinks) 

3.   for each d in downlinks 

4.     for each ps in packet stores 

5.       p = priorityHeuristic(d, ps) 

6.       setDumpPriority(d, ps, p) 

7.     if overflows exist 

8.       backtrack 

9.   return overflows 

10.  

11. priorityHeuristic(d, ps) 

12.    if ps has an immediate overflow 

13.      return MAX_PRIORITY 

14.    else 

15.      o = findFirstOverflow(ps) 

16.      n = numberOfDownlinksBetween(d, o) 

17.      return MAX_PRIORITY – n 

 
Figure 1: Scheduling algorithm 
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volume measured as percent of capacity. The remaining 
buffers are assigned the lowest priority. Last, we 
implement a heuristic that assigns priorities by normalizing 
the percent full values across the available priorities (e.g. 
with 10 priority values, a packet store with volume <10% 
is assigned the lowest priority). All four heuristics are 
compared in the empirical evaluation section of this paper. 
 Finally, certain packet stores may contain time-sensitive 
data (e.g. data which may impact future plans). For these 
“urgent” packet stores, the downlink latency (i.e. time 
between collection and downlink) can be reduced by 
increasing the required margin. To find the largest margin 
without creating overflows, we wrap the 
scheduleDownlinks function in a binary search loop. Each 
iteration of the loop either increases or decreases the 
margin, depending on the existence of overflows. The 
result is a schedule with large margins, keeping the data 
volume low, and reducing the time that data waits in the 
packet store. This technique is limited, however, to data 
collection schedules that have feasible downlink schedules 
(i.e. a solution must exist with no overflows). 

Estimated Computational Complexity of the 
Scheduling Algorithm 
 
Our analysis of the above scheduling algorithm indicates 
the following factors in its computational complexity 
 
scheduleDownlinks = O(D * P * F) 
 
where  
D = # downlinks,  
P = # packet stores,  
F = # fill rate changes 

Finding the best margin only adds a constant factor lg100 
(binary search on a percentage between 1 and 100). 
 For the Rosetta mission, downlink planning is typically 
processed over a "Medium term plan" or MTP, which is 
generally 4 weeks in length.  For Rosetta there are 16 
packet stores, and for one MTP, there are typically 30+ 
downlinks and hundreds of fill rate changes. 

Empirical Evaluation of the Scheduling 
Algorithm 
 
To date, we have conducted an empirical evaluation of the 
priority-based scheduling algorithm, the primary method 
used in operations. We use data from 4 medium-term 
planning (MTP) periods during the Rosetta mission, with 
each period spanning approximately 4 weeks. The CPU 
time required to generate each MTP downlink schedule 
was less than 1 minute running on a typical Windows 
laptop. The results are summarized in Figure 2 and Figure 
3, with more details provided in Appendix A. The actual 
names of the packet stores and MTPs have been replaced 
for security reasons. 
 We evaluate its performance using the following 
metrics: 

• Max peak volume percent: the maximum percent 
volume consumed for any packet store at any time 
during the MTP (no overflow if less than 100%) 

• End volume percent: the percent volume 
consumed at the end of the MTP period 

• Urgent limit: the smallest limit (i.e. largest 
margin) found by the schedule for the packet 
stores designated as containing urgent data 

• Data collected: how much total data was collected 
from observations during the MTP 
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• Data downlinked: how much total data was 
downlinked out of the packet stores during the 
MTP 

• Downlink available: how much downlink was 
theoretically available during the MTP (downlink 
duration multiplied by the bit rate). 

• Packet store hard limit: what was the physical 
limit on the packet stores, and how do the data 
amounts compare 

• Packet store soft limit: what was the operational 
limit imposed (including margin), and how do the 
data amounts compare 

• Start and end volume: what was the volume of the 
packet store at the start and end of the MTP 

 
 The “Max peak volume” reported in Figure 2 give the 
maximum percent volume consumed for any packet store 
at any time during the MTP as a percent of the capacity for 
that packet store. This shows that, during the given 16-
week period, at no point are any of the packet stores 
predicted to overflow. In addition, the data in Appendix A 
shows that at no point are any of the packet stores expected 
to exceed the desired “soft” limit. Some margin (typically 
20%) on the packet store volume is maintained in order to 
account for uncertainties in the data collection and 

downlink model, which can occur from such things as 
variable data compression rates and communication 
outages. The “End volume” series in Figure 2 shows the 
percent volume consumed at the end of the MTP. 
Operationally, there is a preference to have minimal carry-
over from one MTP to the next. For these four MTPs, the 
end volume stays below 10% of the capacity. 
 In each MTP, the data in two or three of the packet 
stores was considered urgent (designated with a ‘*’ in the 
tables in Appendix A), and the downlink scheduler 
searched for the largest feasible margin on the packet 
stores. This meant keeping the volume low for the urgent 
packet stores without overflowing the other packet stores. 
In this way, the urgent data is not left to accumulate in the 
packet stores over long periods of time. The “Urgent limit” 
series in Figure 2 gives the smallest limit found by the 
scheduler for the packet stores containing urgent data. 
 In Figure 3, we see that the data collected amounts are 
very similar to the downlinked amounts for each MTP. It 
also shows that both values stay greater than 80% of the 
theoretical downlink available. The available downlink 
increases in the last MTP due to an increase in downlink 
rate, which occurs as the spacecraft exits solar conjunction. 
Finally, we can see that the data collected in each MTP is 
roughly between 2x and 3x the total packet store limit. 
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